skip to main content


Search for: All records

Creators/Authors contains: "Beckwith, Luke"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Bhasin, Shivam ; Chattopadhyay, Anupam ; Güneysu, Tim ; Bhunia, Swarup (Ed.)
    Digital signature algorithms are the foundation of many secure communication protocols, including those used in Internet of Things (IoT) applications. While the current generation of signature schemes is secure against classical attacks, they are potentially vulnerable to attacks using quantum computers. Because of this threat, multiple new schemes have been developed and evaluated in recent years. From among these schemes, the National Institute of Standards and Technology standardized two and selected additional three for near-term standardization. For use in IoT, these schemes must be sufficiently efficient in terms of their public-key and signature sizes and the timing of major operations. In this paper, we analyze the choice between two primary schemes considered for extensive use in IoT, CRYSTALS-Dilithium and FALCON, from the point of view of developing efficient hardware accelerators supporting cryptographic operations performed by IoT clients and servers. 
    more » « less
    Free, publicly-accessible full text available October 1, 2024
  2. Johansson, Thomas ; Smith-Tone, Daniel (Ed.)
    In 2022, NIST selected the first set of four post-quantum cryptography schemes for near-term standardization. Three of them - CRYSTALS-Kyber, CRYSTALS-Dilithium, and FALCON - belong to the lattice-based family and one - SPHINCS+ - to the hash-based family. NIST has also announced an ”on-ramp” for new digital signature candidates to add greater diversity to the suite of new standards. One promising set of schemes - a subfamily of code-based cryptography - is based on the linear code equivalence problem. This well-studied problem can be used to design flexible and efficient digital signature schemes. One of these schemes, LESS, was submitted to the NIST standardization process in June 2023. In this work, we present a high-performance hardware implementation of LESS targeting Xilinx FPGAs. The obtained results are compared with those for the state-of-the-art hardware implementations of CRYSTALS-Dilithium, SPHINCS+, and FALCON. 
    more » « less
    Free, publicly-accessible full text available August 16, 2024
  3. Many currently deployed public-key cryptosystems are based on the difficulty of the discrete logarithm and integer factorization problems. However, given an adequately sized quantum computer, these problems can be solved in polynomial time as a function of the key size. Due to the future threat of quantum computing to current cryptographic standards, alternative algorithms that remain secure under quantum computing are being evaluated for future use. One such algorithm is CRYSTALS-Dilithium, a lattice-based digital signature scheme, which is a finalist in the NIST Post Quantum Cryptography (PQC) competition. As a part of this evaluation, high-performance implementations of these algorithms must be investigated. This work presents a high-performance implementation of CRYSTALS-Dilithium targeting FPGAs. In particular, we present a design that achieves the best latency for an FPGA implementation to date. We also compare our results with the most-relevant previous work on hardware implementations of NIST Round 3 post-quantum digital signature candidates. 
    more » « less